A Common Function of Basal Ganglia-Cortical Circuits Subserving Speed in Both Motor and Cognitive Domains
نویسندگان
چکیده
Distinct regions of the frontal cortex connect with their basal ganglia and thalamic counterparts, constituting largely segregated basal ganglia-thalamo-cortical (BTC) circuits. However, any common role of the BTC circuits in different behavioral domains remains unclear. Indeed, whether dysfunctional motor and cognitive BTC circuits are responsible for motor slowing and cognitive slowing, respectively, in Parkinson's disease (PD) is a matter of debate. Here, we used an effortful behavioral paradigm in which the effects of task rate on accuracy were tested in movement, imagery, and calculation tasks in humans. Using nonlinear fitting, we separated baseline accuracy (Abase ) and "agility" (ability to function quickly) components of performance in healthy participants and then confirmed reduced agility and preserved Abase for the three tasks in PD. Using functional magnetic resonance imaging (fMRI) and diffusion tractography, we explored the neural substrates underlying speeded performance of the three tasks in healthy participants, suggesting the involvement of distinct BTC circuits in cognitive and motor agility. Language and motor BTC circuits were specifically active during speeded performance of the calculation and movement tasks, respectively, whereas premotor BTC circuits revealed activity for speeded performance of all tasks. Finally, PD showed reduced task rate-correlated activity in the language BTC circuits for speeded calculation, in the premotor BTC circuit for speeded imagery, and in the motor BTC circuits for speeded movement, as compared with controls. The present study casts light on the anatomo-functional organization of the BTC circuits and their parallel roles in invigorating movement and cognition through a function of dopamine.
منابع مشابه
Clinical Motor and Cognitive Neurobehavioral Relationships in the Basal Ganglia
The traditional view that the basal ganglia and cerebellum are simply involved in the control of movement has been challenged in recent years. One of the pivotal reasons for this reappraisal has been new information about basal ganglia and cerebellar connections with the cerebral cortex. In essence, recent anatomical studies have revealed that these connections are organized into discrete circu...
متن کاملCognitive-motor interactions of the basal ganglia in development
Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes. The basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer hu...
متن کاملThe primate basal ganglia: parallel and integrative networks.
The basal ganglia and frontal cortex operate together to execute goal directed behaviors. This requires not only the execution of motor plans, but also the behaviors that lead to this execution, including emotions and motivation that drive behaviors, cognition that organizes and plans the general strategy, motor planning, and finally, the execution of that plan. The components of the frontal co...
متن کاملThe Role of Intact Frontostriatal Circuits in Error Processing
The basal ganglia have been suggested to play a key role in performance monitoring and resulting behavioral adjustments. It is assumed that the integration of prefrontal and motor cortico-striato-thalamo-cortical circuits provides contextual information to the motor anterior cingulate cortex regions to enable their function in performance monitoring. So far, direct evidence is missing, however....
متن کاملNavarro Functional anatomy of thalamus and basal ganglia
Published online: 26 July 2002 © Springer-Verlag 2002 ticofugal projection provides positive feedback to the “correct” input, while at the same time suppressing irrelevant information. Topographical organisation of the thalamic afferents and efferents is contralateral, and the lateralisation of the thalamic functions affects both sensory and motoric aspects. Symptoms of lesions located in the t...
متن کامل